Designers and motor personnel advantage from discovering a supplier that’s an skilled resource of info to assist in pragmatic motor choice. Involve application specialists as early as you possibly can, as they are able to assist create prototypes, custom electrical and mechanical styles, mountings, and gearboxes. This also reduces expenses related with shorter lead occasions and rush delivery.

Servo motors can offer higher performance, faster speeds, and smaller sizes. PM synchronous motors offer advantages on high-energy- consuming and high-dynamic applications, compared to induction motors. Variable frequency drives used with asynchronous motors also can be used with synchronous delta servo motor, producing higher efficiencies than an asynchronous motor, using perhaps 30% less energy in positioning applications.Here recommend you delat servo motor.

Delta Electronics’ new high-performance, cost-effective ASDA-B2 series servo motors and drives meet the requirements for general-purpose machine tools and enhance the competitive advantage of servo systems.

The power rating of the ASDA-B2 series ranges from 0.1kW to 3kW. The superior features of this series emphasize built-in generic functions for general purpose applications and avoiding variable costs from mechatronics integration. Delta’s ASDA-B2 makes it convenient to complete assembly, wiring and operation setups. Switching from other brands is quick and easy due to the ASDA-B2′s outstanding quality and features, and complete product lineup. The ASDA-B2 satisfies the requirements of general-purpose machine tools. Customized solutions for different industries are available on request which is why the ASDA-B2 is popular and always in demand by customers in the field of industrial automation.

Induction motor systems (lower cost, rugged, reliable, and well known) can offer an alternative to DC servo motor systems (the traditional, established solution) for certain applications. This, of course, is based on similar electronic controls being used (with the latest technology and approximately the same cost), leaving the cost of motors the differentiating issue.

Overview of the pros and cons of each motor type

Induction motor

SPEEDLess speed range than PMAC motors • Speed range is a function of the drive being used — to 1,000:1 with an encoder, 120:1 under field-oriented control

EFFICIENCYEven NEMA-premium efficiency units exhibit degraded efficiencies at low load

RELIABILITYWaste heat is capable of degrading insulation essential to motor operation • Years of service common with proper operation

POWER DENSITYInduction produced by squirrel cage rotor inherently limits power density

ACCURACYFlux vector and field-oriented control allows for some of accuracy of servos

COST - Relatively modest initial cost; higher operating costs


SPEEDVFD-driven PMAC motors can be used in nearly all induction-motor and some servo applications • Typical servomotor application speed — to 10,000 rpm — is out of PMAC motor range.

EFFICIENCY - More efficient than induction motors, so run more coolly under the same load conditions

RELIABILITY – Lower operating temperatures reduces wear and tear, maintenance • Extends bearing and insulation life • Robust construction for years of trouble-free operation in harsh environments

POWER DENSITY – Rare-earth permanent magnets produce more flux (and resultant torque) for their physical size than induction types

ACCURACY – Without feedback, can be difficult to locate and position to the pinpoint accuracy of servomotors

COST – Exhibit higher efficiency, so their energy use is smaller and full return on their initial purchase cost is realized more quickly


SPEED – Reaches 10,000 rpm • Brushless DC servomotors also operate at all speeds while maintaining rated load

EFFICIENCY – Designed to operate over wide range of voltages (as this is how their speed is varied) but efficiency drops with voltage

RELIABILITY – Physical motor issues minimal; demanding servo applications require careful sizing, or can threaten failure

POWER DENSITY – Capable of high peak torque for rapid acceleration

ACCURACY – Closed-loop servomotor operation utilizes feedback for speed accuracy to ±0.001% of base speed

COST – Price can be tenfold that of other systems

In the end, all industrial motor subtypes have strengths and weaknesses,plus application niches for which they’re most suitable. For example, many industrial applications are essentially constant torque, such as conveyors. Others, such as centrifugal blowers, require torque to vary as the square of the speed. In contrast, machine tools and center winders are constant horsepower, with torque decreasing as speed increases. Which motors are most suitable in these situations? As we will explore, the speed-torque relationship and efficiency requirements often determine the most appropriate motor.