This chapter has explained how to operate steppers by energizing one or two winding pairs at a tiem, but tere are a number of different ways to drive a Nema 42 stepper motor, and this discussion touches on four of them:

* Full-step (one phase on) mode – Each control signal energizes on winding.

* Full-step (two phases on) mode – Each control signal energizes two windings.

* Half-step mode – Each control signal alternates between energizing one and two windings.

* Microstep mode – The controller delivers sinusoidal signals to the stepper’s windings.

Full-Step (One Phase On) Mode

The simplest way to control a stepper driver is to energize one winding at a time. This is the method discussed at the start of this chapter. Figure 4.15 shows what the signaling sequence looks lide when controlling a stepper in this mode.

With each control signal, the rotor truns to align itself with the energized winding. The rotor always turns through the stepper’s rated step angle. That is, if a PM motor is rated for 7.5, each control signal causes it to turn 7.5.

Full-Step (Two Phase On) Mode

In the full-step (two phase on) mode, the controller energizes two windings at once. This turns the rotor through the stepper’s rated angle, and the rotor always aligns itself between two windings. Figure 4.16 illustrates one rotation of a stepper motor driven in this mode.

Figure 4.17 shows what the corresponding drive sequence looks like.

The main advantage of this mode over full-step (one phase on) is that it improves the motor’s torque. Because two windings are always on, torque increases by approximately 30%-40%. The disadvantage is that the power supply has to provide twice as much current to turn the stepper.

Half-Step Mode

The half-step mode is like a combination of the two full-step modes. That is, the controller alternates between energizing one winding and two windings. Figure 4.18 depicts three rotations of a stepper in half-step mode.

Figure 4.19 illustrates a control signal for a stepper motor driven in half-step mode.

In this mode, the rotor aligns itself with windings (when one winding is energized) and between windings (when two windings are energized). This effectively reduces the motor’s step angle by half. That is, if the stepper’s step angle is 1.8, it will trun at 0.9 in half-step mode.

The disadvantage of this mode is that, when a single winding is energized, the rotor turns with approximately 20% less toruqe. This can be compenstated for by increasing the current.

Microstep Mode

The purpose of microstep mode is to have the stepper turn as smoothly as possible. This requires dividing the energizing pulse into potentially hundreds of control signals. Common numbers of division are 8,64,and 256. If the energizing pulse is divided into 256 signals, a 1.8 stepper will turn at 1.8/256=0.007 per control signal.

In this mode, the controller delivers current in a sinusoidal pattern. Successive windings receive a delayed version of this sinusoid. Figure 4.20 gives an idea of what this looks like.

Using this mode reduces torque by nearly 30%, but another disadvantage involes speed. As the width of a control signal decrease, the ability of the motor to respond also decrease. Therefore, if the controller delivers rapid pulses to the stepper in microstep mode, the motor may not turn in a reliable fashion.